
HIGH‐PERFORMANCE COMPUTING

WITH CUDA AND TESLA GPUS

Timothy Lanfear, NVIDIA

G

WHAT IS GPU COMPUTING?

© NVIDIA Corporation 2009

?

What is GPU Computing?

Computing with CP

x86 PCIe bus

© NVIDIA Corporation 2009

Computing with CP
Heterogeneous Co

?

PU + GPU

GPU

PU + GPU
omputing

Low Latency or High Thro

CPUCPU
Optimised for low-latency
access to cached data setsaccess to cached data sets
Control logic for out-of-order
and speculative execution

© NVIDIA Corporation 2009

oughput?

GPUGPU
Optimised for data-parallel,
throughput computationthroughput computation
Architecture tolerant of
memory latency
M t i t d di t d tMore transistors dedicated to
computation

Fermi: The Computational GPU

PerformancePerformance •• 1313×× Double Precision of CPUsDouble Precision of CPUs
•• IEEE 754IEEE 754‐‐2008 SP & DP Floatin2008 SP & DP Floatin

•• Increased Shared Memory froIncreased Shared Memory fro
•• Added L1 and L2 CachesAdded L1 and L2 Caches

FlexibilityFlexibility
•• Added L1 and L2 CachesAdded L1 and L2 Caches
•• ECC on all Internal and ExternECC on all Internal and Extern
•• Enable up to 1 Enable up to 1 TeraByteTeraByte of GPof GP
Hi h S d GDDR5 MHi h S d GDDR5 M•• High Speed GDDR5 Memory High Speed GDDR5 Memory

UsabilityUsability

•• Multiple Simultaneous Tasks Multiple Simultaneous Tasks
•• 1010×× Faster Atomic OperationsFaster Atomic Operations
•• C++ SupportC++ Support

© NVIDIA Corporation 2009

•• System Calls, System Calls, printfprintf supportsupport

U

ss
ng Pointng Point

om 16 KB to 64 KBom 16 KB to 64 KB

D
R

A
M

 I/
F

D
R

A
M

 I/
F

/F/F

D
R

D
R

D
R

A
M

 I/F
D

R
A

M
 I/F

nal Memoriesnal Memories
PU MemoriesPU Memories
I t fI t f

H
O

ST
 I/

H
O

ST
 I/

Th
re

ad D
R

A
D

R
A

R
A

M
 I/F

R
A

M
 I/F

L2L2

InterfaceInterface

G
ig

a
T

R
A

M
 I/

F
R

A
M

 I/
F D

R
A

M

D
R

A
M

A

M
 I/F

A
M

 I/F

D
R

D
R I/FI/Fon GPUon GPU

ss

Streaming Multiprocesso

32 CUDA cores per SM (512 total)

2:1 ratio SP:DP floating-point
performance

Dual Thread Scheduler

64 KB of RAM for shared memory
and L1 cache (configurable)

© NVIDIA Corporation 2009

r Architecture
SchedulerScheduler SchedulerScheduler

Instruction CacheInstruction Cache

Register FileRegister File

DispatchDispatch DispatchDispatch

CoreCore CoreCore CoreCore CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCoreCoreCore CoreCore CoreCore CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

Load/Store Units × 16

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

Special Func Units × 4

Interconnect NetworkInterconnect Network

64K Configurable64K Configurable
Cache/Shared Cache/Shared MemMem

Uniform CacheUniform Cache

Tesla C-Series Workstatio

Tesla C1060
Architecture Tesla 10-series GPUArchitecture Tesla 10 series GPU

Number of Cores 240

Caches 16 KB Shared Memory / 8 cores

Floating Point Peak 933 Gigaflops (single)Floating Point Peak
Performance

933 Gigaflops (single)
78 Gigaflops (double)

GPU Memory 4 GB

Memory Bandwith 102 GB/s (GDDR3)

System I/O PCIe x16 Gen2

Power 188 W (max)

© NVIDIA Corporation 2009

Power 188 W (max)

Available Available now

on GPUs

Tesla C2050 Tesla C2070
Tesla 20-series GPUTesla 20 series GPU

448

64 KB L1 cache + Shared Memory / 32 cores, 768 KB L2 cache

1030 Gigaflops (single)1030 Gigaflops (single)
515 Gigaflops (double)

3 GB
2.625 GB with ECC on

6 GB
5.25 GB with ECC on

144 GB/s (GDDR5)

PCIe x16 Gen2

247 W (max) 225 W (max)247 W (max) 225 W (max)

Shipping in May Q3 2010

CUDA ARCHITECTURE

© NVIDIA Corporation 2009

CUDA Parallel Computing

Parallel computing architecture p g
and programming model

Includes a CUDA C compilerIncludes a CUDA C compiler,
support for OpenCL and
DirectCompute

Architected to natively support
multiple computationalmultiple computational
interfaces (standard languages
and APIs)

© NVIDIA Corporation 2009

g Architecture

GPU Computing Application

CUDA C O CL™ Di tC t CUDA F t

C C++ Fortran Java C# …

NVIDIA GPU with the CUDA parallel computing NVIDIA GPU with the CUDA parallel computing
architecturearchitecture

CUDA C OpenCL™ DirectCompute CUDA Fortran

architecturearchitecture

NVIDIA CUDA C and Open

OpenCLOpenCLEntry point for developers
who want low-level API

Shared back-end compiler
and optimization technology PTPT

GPGP

© NVIDIA Corporation 2009

nCL

CUDA CCUDA C Entry point for developers
who prefer high-level C

TXTX

PUPU

CUDA PROGRAMMING MOD

© NVIDIA Corporation 2009

DEL

Processing Flow

PCI Bus

1. Copy input data from CPU memory to GPU
memory

2 L d GPU d t2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU
memory

© NVIDIA Corporation 2009

memory

CUDA Kernels

Parallel portion of application: eParallel portion of application: e
Entire GPU executes kernel, man

CUDA threads:
Lightweight
Fast switching
1000s execute simultaneously

CPU Host E
GPU Device E

© NVIDIA Corporation 2009

GPU Device E

execute as a kernelexecute as a kernel
ny threads

Executes functions
Executes kernelsExecutes kernels

CUDA Kernels: Parallel T

A kernel is an array of threads,A kernel is an array of threads,
executed in parallel

All threads execute the same
code

Each thread has an ID
Select input/output data
Control decisions

© NVIDIA Corporation 2009

hreads

float x = input[threadID];
float y = func(x);

t t[th dID]output[threadID] = y;

CUDA Kernels: Subdivide

© NVIDIA Corporation 2009

e into Blocks

CUDA Kernels: Subdivide

Threads are grouped into block

© NVIDIA Corporation 2009

e into Blocks

ks

CUDA Kernels: Subdivide

Threads are grouped into block
Blocks are grouped into a grid

© NVIDIA Corporation 2009

Blocks are grouped into a grid

e into Blocks

ks

CUDA Kernels: Subdivide

Threads are grouped into block
Blocks are grouped into a grid

© NVIDIA Corporation 2009

Blocks are grouped into a grid
A kernel is executed as a grid o

e into Blocks

ks

of blocks of threads

CUDA Kernels: Subdivide

Threads are grouped into block
Blocks are grouped into a grid

© NVIDIA Corporation 2009

Blocks are grouped into a grid
A kernel is executed as a grid o

e into Blocks

ks

of blocks of threads

Communication Within a

Threads may need to cooperateThreads may need to cooperate
Memory accesses
Share results

Cooperate using shared memor
Accessible by all threads within a

Restriction to “within a block” p
Fast communication between N t

© NVIDIA Corporation 2009

Block

ee

ry
a block

permits scalability
threads is not feasible when N large

Transparent Scalability –

1 2 3 4 5 6

© NVIDIA Corporation 2009

G84

7 8 9 10 11 12

11 12

7 8

9 10

5 6

7 8

3 4

1 2

Transparent Scalability –

1 2 3 4 5 6

© NVIDIA Corporation 2009

G80

7 8 9 10 11 12

9 10 11 12

1 2 3 4 5 6 7 8

Transparent Scalability –

1 2 3 4 5 6

1 2 3 4 5 6 7 8

© NVIDIA Corporation 2009

GT200

7 8 9 10 11 12

9 10 11 12 ...
Idle Idle IdleIdle Idle Idle

CUDA Programming Mod

A kernel executes as a grid ofA kernel executes as a grid of
thread blocks

A block is a batch of threads
Communicate through shared
memory

E h bl k h bl k IDEach block has a block ID

E h th d h th d ID
© NVIDIA Corporation 2009

Each thread has a thread ID

del - Summary

Host Device

Kernel 1

0 1 2 3
1D

4 5 6 7

Kernel 2
0,0 0,1 0,2 0,3

2D
1,0 1,1 1,2 1,3

MEMORY MODEL

© NVIDIA Corporation 2009

Memory hierarchy

Thread:
Registers

© NVIDIA Corporation 2009

Memory hierarchy

Thread:
Registers

Th dThread:
Private memory

© NVIDIA Corporation 2009

Memory hierarchy

Thread:
Registers

Th dThread:
Private memory

Block of threads (work group):
Local memory

© NVIDIA Corporation 2009

Memory hierarchy

Thread:
Registers

Th dThread:
Private memory

Block of threads (work group):
Local memory

© NVIDIA Corporation 2009

Memory hierarchy

Thread:
Registers

Th dThread:
Private memory

Block of threads (work group):
Local memory

All blocks:
Global memory

© NVIDIA Corporation 2009

y

Memory hierarchy

Thread:
Registers

Th dThread:
Private memory

Block of threads (work group):
Local memory

All blocks:
Global memory

© NVIDIA Corporation 2009

y

Memory Spaces

Memory Location Cached Access

Register On-chip N/A R/Wg p

Local Off-chip No R/W

Shared On-chip N/A R/WShared On-chip N/A R/W

Global Off-chip No R/W

C t t Off hi Y RConstant Off-chip Yes R

Texture Off-chip Yes R

© NVIDIA Corporation 2009

Scope Lifetime

One thread Thread

One thread Thread

All threads in a block BlockAll threads in a block Block

All threads + host Application

All th d + h t A li tiAll threads + host Application

All threads + host Application

COMPILATION

© NVIDIA Corporation 2009

Visual Studio

Separate file typesSeparate file types
.c/.cpp for host code
.cu for device/mixed code

Compilation rules: cuda.rules
Syntax highlighting
Intellisense

Integrated debugger and
profiler: Nsight

© NVIDIA Corporation 2009

profiler: Nsight

Linux

Separate file typesSeparate file types
.c/.cpp for host code
.cu for device/mixed code

Typically makefile driven

cuda-gdb, Allinea DDT,
TotalView for debugging

© NVIDIA Corporation 2009

CUDA Visual Profiler

Compilation Commands

nvcc <filename>.cu [-o <executable>][]
Builds release mode

nvcc –g <filename>.cu
Builds debug (device) modeBuilds debug (device) mode
Can debug host code but not device code

nvcc –deviceemu <filename>.cu
B ild d i l ti dBuilds device emulation mode
All code runs on CPU, but no debug sym

nvcc –deviceemu –g <filename>.cu
Builds debug device emulation mode
All code runs on CPU, with debug symbo
Debug using gdb or other linux debugger

© NVIDIA Corporation 2009

e (runs on GPU)

bols

ols
r

Exercise 0: Run a Simple

Log on to test system
C
T

g y
Compile and run pre-written CUDA
program — deviceQuery

D

o

© NVIDIA Corporation 2009

Program

There is 1 device supporting CUDA

Device 0: "Quadro FX 570M"

CUDA Device Query (Runtime API) version (CUDART static linking)
There are 2 devices supporting CUDA

Major revision number: 1
Minor revision number: 1
Total amount of global memory: 268107776 bytes
Number of multiprocessors: 4
Number of cores: 32
Total amo nt of constant memor 65536 b tes

Device 0: "Tesla C1060"
CUDA Capability Major revision number: 1
CUDA Capability Minor revision number: 3
Total amount of global memory: 4294705152 bytes
Number of multiprocessors: 30
Number of cores: 240Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 16384 bytes
Total number of registers available per block: 8192
Warp size: 32
Maximum number of threads per block: 512
Maximum sizes of each dimension of a block: 512 x 512 x 64

Number of cores: 240
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 16384 bytes
Total number of registers available per block: 16384
Warp size: 32
Maximum number of threads per block: 512
Maximum sizes of each dimension of a grid: 65535 x 65535 x 1
Maximum memory pitch: 262144 bytes
Texture alignment: 256 bytes
Clock rate: 0.95 GHz
Concurrent copy and execution: Yes

Maximum sizes of each dimension of a block: 512 x 512 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 1
Maximum memory pitch: 262144 bytes
Texture alignment: 256 bytes
Clock rate: 1.44 GHz
Concurrent copy and execution: Yes

Test PASSED

Press ENTER to exit...

Concurrent copy and execution: Yes
Run time limit on kernels: No
Integrated: No
Support host page-locked memory mapping: Yes
Compute mode: Exclusive (only

one host thread at a time can use this device)

CUDA C PROGRAMMING LA

© NVIDIA Corporation 2009

ANGUAGE

CUDA C — C with Runtim
Device management:
cudaGetDeviceCount(), cudaGe

Device memory management:
cudaMalloc(), cudaFree(), cu

Texture management:Texture management:
cudaBindTexture(), cudaBindT

Graphics interoperability:
cudaGLMapBufferObject(), cud

© NVIDIA Corporation 2009

me Extensions

etDeviceProperties()

daMemcpy()

TextureToArray()

daD3D9MapVertexBuffer()

CUDA C — C with Langua
Function qualifiers
__global__ void MyKernel() {}
device float MyDeviceFunc() {}__de ce__ oat y e ce u c() {}

__host__ int HostFunc() {}

Variable qualifiers
__device__ float MyGPUArray[32];
__constant__ float MyConstArray[32
__shared__ float MySharedArray[3

Built-in vector types
int1, int2, int3, int4
float1 float2 float3 float4float1, float2, float3, float4
double1, double2
etc.

© NVIDIA Corporation 2009

age Extensions

// call from host, execute on GPU
} // call from GPU, execute on GPU} // ca o G U, e ecute o G U

// call from host, execute on host

; // in GPU memory space
2]; // write by host; read by GPU
32]; // shared within thread block

CUDA C — C with Langua
Execution configuration
dim3 dimGrid(100, 50);
di 3 di Bl k(4 8 8)dim3 dimBlock(4, 8, 8);
MyKernel <<< dimGrid, dimBlock

B ilt i i bl d f ti lidBuilt-in variables and functions valid
dim3 gridDim; // G
dim3 blockDim; // B
dim3 blockIdx; // B
dim3 threadIdx; // T
void __syncthreads(); // T__ y

© NVIDIA Corporation 2009

age Extensions

// 5000 thread blocks
// 256 th d bl k// 256 threads per block

>>> (...); // Launch kernel

d i d i dd in device code:
Grid dimension
Block dimension
Block index
Thread index
Thread synchronizationy

SAXPY: Device Code
void saxpy_serial(int n, float a, f

{

for (int i = 0; i < n; ++i)for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

__global__ void saxpy_parallel(int

{

int i = blockIdx.x*blockDim.x +

if (i < n) y[i] = a*x[i] + y[i

}

© NVIDIA Corporation 2009

float *x, float *y)

Standard C Code

 n, float a, float *x, float *y)

+ threadIdx.x;

i];

Parallel C CodeParallel C Code
blockIdx.x

. . .

blockDim.x
threadIdx.x

SAXPY: Host Code
// Allocate two N-vectors h_x and h_y
int size = N * sizeof(float);
float* h_x = (float*)malloc(size);
float* h_y = (float*)malloc(size);_

// Initialize them...

// Allocate device memory
float* d float* dfloat* d_x; float* d_y;
cudaMalloc((void**)&d_x, size));
cudaMalloc((void**)&d_y, size));

// Copy host memory to device memory// Copy host memory to device memory
cudaMemcpy(d_x, h_x, size, cudaMemcpyH
cudaMemcpy(d_y, h_y, size, cudaMemcpyH

// Invoke parallel SAXPY kernel with 2// Invoke parallel SAXPY kernel with 2
int nblocks = (N + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(N, 2

// Copy result back from device memory

© NVIDIA Corporation 2009

// py y
cudaMemcpy(h_y, d_y, size, cudaMemcpyD

HostToDevice);
HostToDevice);

256 threads/block256 threads/block

.0, d_x, d_y);

y to host memoryy y
DeviceToHost);

Exercise 1: Move Data be

Start from the “cudaMallocAndStart from the cudaMallocAnd
Part 1: Allocate memory for poi
Part 2: Copy h a on the host toPart 2: Copy h_a on the host to
Part 3: Do a device to device co
Part 4: Copy d b on the devicePart 4: Copy d_b on the device
Part 5: Free d_a and d_b on the
Bonus: Experiment with cudaMBonus: Experiment with cudaM
allocating h_a.

© NVIDIA Corporation 2009

etween Host and GPU

Memcpy” template.Memcpy template.
nters d_a and d_b on the device.
d a on the device.d_a on the device.

opy from d_a to d_b.
back to h a on the host.back to h_a on the host.

e host.
MallocHost in place of malloc forMallocHost in place of malloc for

Launching a Kernel

Call a kernel with
Func <<<Dg,Db,Ns,S>>> (params);
dim3 Dg(mx,my,1); // grid spec
dim3 Db(nx,ny,nz); // block spec
size_t Ns; // shared memory
cudaStream_t S; // CUDA stream

Execution configuration is passed to
kernel with built-in variables
dim3 gridDim, blockDim, blockIdx,

threadIdx;

E t t t ithExtract components with
threadIdx.x, threadIdx.y,
threadIdx.z, etc.

© NVIDIA Corporation 2009

Host Device

Kernel 1

0 1 2 3
1D

4 5 6 7

Kernel 2
0,0 0,1 0,2 0,3

2D
1,0 1,1 1,2 1,3

Exercise 2: Launching Ke

Start from the “myFirstKernel”Start from the myFirstKernel
Part1: Allocate device memory
pointer d_a.p _
Part2: Configure and launch the
thread blocks.
Part3: Have each thread set an

idx = blockIdx.x*block
d a[idx] = 1000*blockId_a[idx] = 1000*blockI

Part4: Copy the result in d_a ba
Part5: Verify that the result is co

© NVIDIA Corporation 2009

Part5: Verify that the result is co

ernels

template.template.
for the result of the kernel using

e kernel using a 1-D grid of 1-D

element of d_a as follows:
kDim.x + threadIdx.x
Idx x + threadIdx xIdx.x + threadIdx.x

ack to the host pointer h_a.
orrectorrect.

Exercise 3: Reverse Array

Given an input array {a0, a1, …,Given an input array {a0, a1, …,
reversed array {an-1, an-2, …, a0}
Start from the “reverseArray_siy_
Only one thread block launched

N = numThreads = 256 elem
Part 1 (of 1): All you have to do
kernel “reverseArrayBlock()”
Each thread moves a single ele

Read input from d_a pointer
Store output in reversed location

© NVIDIA Corporation 2009

Store output in reversed location

y, Single Block

an 1} in pointer d a, store thean-1} in pointer d_a, store the
in pointer d_b

ingleblock” templateg p
d, to reverse an array of size

ments
is implement the body of the

ement to reversed position

n in d b pointern in d_b pointer

Exercise 4: Reverse Array

Given an input array {a0, a1, …,Given an input array {a0, a1, …,
reversed array {an-1, an-2, …, a0}
Start from the “reverseArray_my_
Multiple 256-thread blocks laun

To reverse an array of size N, N/2
Part 1: Compute the number of
Part 2: Implement the kernel rev
Note that now you must compu

The reversed location within the
Th d ff t t th t t

© NVIDIA Corporation 2009

The reversed offset to the start o

y, Multi-Block

an 1} in pointer d a, store thean-1} in pointer d_a, store the
in pointer d_b

multiblock” templatep
nched
256 blocks
blocks to launch

verseArrayBlock()
ute both

block
f th bl kof the block

PERFORMANCE CONSIDERA

© NVIDIA Corporation 2009

ATIONS

Single-Instruction, Multip

Warp: set
single-inst
streaming
SM hardw
warp and
Threads c
SIMT warp
independep
Best effici
execute to
same pathp
Each SM
SIMT warp

© NVIDIA Corporation 2009

ple-Thread Execution

of 32 parallel threads that execute together in
truction, multiple-thread mode (SIMT) on a
 multiprocessor (SM)

ware implements zero-overhead
thread scheduling

can execute independently
p diverges and converges when threads branch
entlyy
ency and performance when threads of a warp

ogether, so no penalty if all threads in a warp take
h of execution
executes up to 1024 concurrent threads, as 32
ps of 32 threads

Global Memory

Off-chip global memory is not cache

Tesla T10

Bridge System Memory

Work Distribution

Host CPU

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

Interconnection Network

© NVIDIA Corporation 2009

SM
I-Cache

MT Issue
C-Cache

ed

SP SP

SP SP

C-Cache

SP SP

SP SP

SFU SFU

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DP
Shared
Memory

Efficient Access to Globa
Single memory transaction (coalescing)

128 bytes global memory

16 threads (half-warp)

© NVIDIA Corporation 2009

al Memory
) for some memory addressing patterns

Linear pattern
Not all need participate
Anywhere in block OK

Shared Memory

© NVIDIA Corporation 2009

More than 1 Tbyte/secMore than 1 Tbyte/sec
aggregate memory bandwidth
Use it

As a cache
To reorganize global memory
accesses into coalesced patternaccesses into coalesced pattern
To share data between threads

16 kbytes per SM

Shared Memory Bank Con

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0

B k 5
Bank 4
Bank 3
Bank 2

Th d 5
Thread 4
Thread 3
Thread 2

Bank 7
Bank 6
Bank 5

Thread 7
Thread 6
Thread 5

Bank 15Thread 15

© NVIDIA Corporation 2009

Bank 15Thread 15

nflicts

Successive 32-bit words
i d t diff t b kassigned to different banks

Simultaneous access to the
same bank by threads in a half-
warp causes conflict and
serializes access
Linear access patternLinear access pattern
Permutation
Broadcast (from one address)
Conflict, stride 8

Exercise 5: Optimize Reve

Array reversal has a performanArray reversal has a performan
Use the CUDA visual profiler to
Look atLook at

GLD_INCOHERENT
GST_INCOHERENT
WARP_SERIALIZE

Take a note of GPU Time

© NVIDIA Corporation 2009

erse Array

ce problemce problem
o run the code

Exercise 5: Optimize Reve

Goal: Get rid of incoherent load
performance
Use shared memory to reverse
Part 1: compute the number of

One element per thread
Part 2: implement the kernelPart 2: implement the kernel

Comments should help
Don’t forget to compute the corre

Part 3: Profile the working code
Compare value of GLD/GST_INCO
Compare GPU Time to previous

© NVIDIA Corporation 2009

Compare GPU Time to previous

erse Array

ds/stores and improve p

each block
bytes of shared mem

ect block offset!
e
OHERENT to previous

Reverse in Shared Memo
0 1 2 3 4 5 6Global Memory

0 1 2 3 4 5 6Local Variables

Coalesced Read

0 1 2 3 4 5 6(Registers)

3 2 1 0 7 6 5Shared Memory

15 14 13 12 11 10 9Global Memory

© NVIDIA Corporation 2009

y

ry
7 8 9 10 11 12 13 14 15

7 8 9 10 11 12 13 14 157 8 9 10 11 12 13 14 15

4 11 10 9 8 15 14 13 12

Coalesced Write

8 7 6 5 4 3 2 1 0

Matrix Transpose
Access columns of a tile in sha
contiguous data to global memg g
Requires __syncthreads() sinc
other threads
Pad shared memory array to av

idata
tile

© NVIDIA Corporation 2009

ared memory to write
moryy

e threads write data read by

void bank conflicts

odata

Matrix Transpose

There are further optimisationsThere are further optimisations
SDK example.

© NVIDIA Corporation 2009

: see the New Matrix Transpose: see the New Matrix Transpose

OTHER GPU MEMORIES

© NVIDIA Corporation 2009

Texture Memory

© NVIDIA Corporation 2009

Texture is an object for reading dataj g
Data is cached
Host actions

All t GPUAllocate memory on GPU
Create a texture memory reference
object
Bind the texture object to memory
Clean up after use

GPU actionsGPU actions
Fetch using texture references
text1Dfetch(), tex1D(), tex2D(),
tex3D()tex3D()

Constant Memory

© NVIDIA Corporation 2009

Write by host, read by GPUWrite by host, read by GPU
Data is cached
Useful for tables of constantsUseful for tables of constants

EXECUTION CONFIGURATION

© NVIDIA Corporation 2009

N

Execution Configuration

How many blocks?

vectorAdd <<< BLOCKS, THREADS_PER_BLOC

y
At least one block per SM to keep ever
At least two blocks per SM so somethin
to completeto complete
Many blocks for scalability to larger and

How many threads?
At least 192 threads per SM to hide rea
in same block)
Use many threads to hide global memo
Too many threads exhausts registers a
Thread count a multiple of warp size
Typically between 64 and 256 threads

© NVIDIA Corporation 2009

Typically, between 64 and 256 threads

CK >>> (N, 2.0, d_x, d_y);

ry SM occupied
ng can run if block is waiting for a synchronization

d future GPUs

ad after write latency of 11 cycles (not necessarily

ory latency
5and shared memory

per block

x = y + 5;

z = x + 3;

per block

Occupancy Calculator

oo

© NVIDIA Corporation 2009

blockper threadsSMper blocksoccupancy 


SMper threadsmaximum
occupancy 

O l l t h t d ffOccupancy calculator shows trade-offs
between thread count, register use,
shared memory use
Low occupancy is bad
Increasing occupancy doesn’t always help

DEBUGGING AND PROFILING

© NVIDIA Corporation 2009

G

Debugging

nvcc flagsnvcc flags
–debug (-g)

Generate debug informat
--device-debug <level> (-G <level

Generate debug informat
optimisation level for the
‘debuggability’. Allowed v

Debug with
cuda gdb a outcuda-gdb a.out

Usual gdb commands available

© NVIDIA Corporation 2009

ion for host code
l>)
ion for device code, plus also specify the
device code in order to control its

values for this option: 0,1,2,3

e

Debugging

Additional commands in cuda-gdbg
thread — Display the current host
thread <<<(TX,TY,TZ)>>> — Switch
coordinates
thread <<<(BX,BY),(TX,TY,TZ)>>> —
specified coordinates
info cuda threads — Display a suminfo cuda threads Display a sum
currently resident on the GPU
info cuda threads all — Display a l
resident on the GPU
info cuda state — Display informat

next and step advance all threads
where all warps continue to an imp

© NVIDIA Corporation 2009

where all warps continue to an imp

b
t and CUDA thread of focus.
h to the CUDA thread at specified

— Switch to the CUDA block and thread at

mmary of all CUDA threads that aremmary of all CUDA threads that are

ist of each CUDA thread that is currently

tion about the current CUDA state.
in a warp, except at _syncthreads()

plicit barrier following syncplicit barrier following sync

Parallel Nsight 1.0

Nsight Parallel Debuggerg gg

GPU source code debugging

Variable & memory inspectionVariable & memory inspection

Nsight Analyzer

Pl tf l l A l iPlatform‐level Analysis

For the CPU and GPU

Nsight Graphics InspectorNsight Graphics Inspector
Visualize and debug graphics content

© NVIDIA Corporation 2009

Allinea DDT

GPU Debu
Making it

Allinea DDT — CU

© NVIDIA Corporation 2009

gging
easy

UDA Enabled

TotalView for CUDA

TotalV

© NVIDIA Corporation 2009

View for CUDA

CUDA Visual Profiler

cudaprofcudaprof
Documentation in $CUDA/cuda

© NVIDIA Corporation 2009

prof/doc/cudaprof.html

CUDA Visual Profiler

Open a new projectOpen a new project
Select session settings through
Execute CUDA program by clicExecute CUDA program by clic
Various views of collected data
Results of different runs storedResults of different runs stored
Project can be saved

© NVIDIA Corporation 2009

h dialogue
king Start buttonking Start button

a available
d in sessions for easy comparisond in sessions for easy comparison

MISCELLANEOUS TOPICS

© NVIDIA Corporation 2009

Expensive Operations

32-bit multiply; mul24() and u32 bit multiply; __mul24() and __u
sin(), exp() etc.; faster, less accur
Integer division and modulo; avoidInteger division and modulo; avoid
operations for powers of 2
Branching where threads of warp g

© NVIDIA Corporation 2009

umul24() are fast 24-bit multipliesumul24() are fast 24 bit multiplies
rate versions are __sin(), __exp() etc.
d if possible; replace with bit shiftd if possible; replace with bit shift

take differing paths of control flowg

Host to GPU Data Transfe

PCI Express Gen2, 8 Gbytes/secPCI Express Gen2, 8 Gbytes/sec
Use page-locked (pinned) memor
GPU and host
Data transfer host-GPU and GPU
both on host and GPU

© NVIDIA Corporation 2009

ers

peakpeak
ry for maximum bandwidth between

-host can overlap with computation

Applicatio

CUDA Lib

(writte
CUDA Lib

cuFFT cuBLA

CUDACPU Hardware CUDA

C

CPU Hardware

PCI‐E Switch1U

© NVIDIA Corporation 2009
4 cores

n Software

braries

en in C)
braries
AS cuDPP

Compiler CUDA ToolsCompiler

Fortran

CUDA Tools

Debugger Profiler

240 cores

On-line Course

Programming Massively ParalleProgramming Massively Paralle
University of Illinois at Urbana-C
http://courses.ece.illinois.edu/e
PowerPoint slides, MP3 recordi
by Wen-Mei Hwu and David Kirk

© NVIDIA Corporation 2009

el Processors, Wen-Mei Hwu,el Processors, Wen Mei Hwu,
Champaign

ece498/al/
ings of lectures, draft of textbook
k (NVIDIA)

GPU Programming Text B

David Kirk (NVIDIA)()
Wen-mei Hwu (UIUC)
Chapter 1: Introduction
Chapter 2: History of GPU Computing
Chapter 3: Introduction to CUDAChapter 3: Introduction to CUDA
Chapter 4: CUDA Threads
Chapter 5: CUDA Memories
Chapter 6: Performance Considerations
Chapter 7: Floating-Point Considerationsp g
Chapter 8: Application Case Study I - Advanced MRI
Reconstruction
Chapter 9: Application Case Study II – Molecular Visualization
and Analysis
Chapter 10: Parallel Programming and Computational ThinkingChapter 10: Parallel Programming and Computational Thinking
Chapter 11: A Brief Introduction to OpenCL
Chapter 12: Conclusion and Future Outlook
Appendix A: Matrix Multiplication Example Code
Appendix B: Speeds and feeds of current generation CUDA

© NVIDIA Corporation 2009

devices

Book

CUDA Zone: www.nvidia.
CUDA Toolkit

Compiler
Libraries

CUDA SDKCUDA SDK
Code samples

CUDA P filCUDA Profiler

ForumsForums

Resources for
CUDA d l

© NVIDIA Corporation 2009

CUDA developers

com/CUDA

