Timothy Lanfear, NVIDIA = //
<A NVIDIA,

>

NVIDIA

WHAT IS GPU COMPUTING?

© NVIDIA Corporation 2009

What is GPU Computing? <X

NVIDIA

i

I..'I-" = e =)= ek B
!uumuﬁuwou'rLE

X86 PCle bus GPU

Computing with CPU + GPU
Heterogeneous Computing

© NVIDIA Corporation 2009

NVIDIA

Low Latency or High Throughput? <3

 GPU

. Optlmlsed for low-latency * Optimised for data-parallel,
access to cached data sets throughput computation

® Control logic for out-of-order * Architecture tolerant of
and speculative execution memory latency

* More transistors dedicated to
computation

© NVIDIA Corporation 2009

"

e 13x D le Precisi fCP
Performance 3X Double Precision o Us

. * |EEE 754-2008 SP & DP Floating Point

* Increased Shared Memory from 16 KB to 64 KB
> ¢ Added L1 and L2 Caches
Flexibility * ECCon all Internal and External Memories

—] =
e Enable up to 1 TeraByte of GPU Memories
e High Speed GDDR5 Memory Interface
~* Multiple Simultaneous Tasks on GPU
_— e 10% Faster Atomic O ti
Usablllty aster Atomic Operations

e C++ Support
e System Calls, printf support

DRAM I/F

HOST I/F

pzV\V RIS Giga Threac

A

—

NVIDIA

4/l N\vdd 4/l Nvdd 4/l Nvdd

| NYHd

—

|

“Instruction Cache «D: !

EEEE Vo
1

_ Register File

Streaming Multiprocessor Architecture

32 CUDA cores per SM (512 total)

Core Core|Core Core

Core Core|Core Core

* 2:1ratio SP:DP floating-point
performance

Core Core|Core Core

Core Core Core Core

Core Core Core Core

Dual Thread Scheduler

Core Core Core Core

Core Core Core Core

* 64 KB of RAM for shared memory
and L1 cache (configurable)

Core Core|Core Core

oad/Store Units x 16§
Special Func Units x 44

Iirconnect Network

4K Configurable
che/Shared Mem

lUniform Cache

© NVIDIA Corporation 2009

NVIDIA

-~ P
-

Tesla C-Series Workstation GPUs <

Architecture

Number of Cores

Caches

Floating Point Peak
Performance

GPU Memory

Memory Bandwith
System I/O

Power

Available

© NVIDIA Corporation 2009

>

NVIDIA

CUDA ARCHITECTURE

© NVIDIA Corporation 2009

Parallel computing architecture
and programming model

Includes a CUDA C compiler,
support for OpenCL and
DirectCompute

Architected to natively support
multiple computational
Interfaces (standard languages
and APIs)

IA Corporation 2009

CUDA Parallel Computing Architecture r,(f,%ﬂ

GPU Computing Application

C C++ Fortran Java C#

CUDAC [OpenCL™] DirectCompute] CUDA Fortran

NVIDIA GPU with the CUDA parallel computing
architecture

© NVID

NVIDIA CUDA C and OpenCL >

NVIDIA

Entry point for developers
who prefer high-level C
Entry point for developers
who want low-level API

Shared back-end compiler
and optimization technology

|

>

NVIDIA

CUDA PROGRAMMING MODEL

© NVIDIA Corporation 2009

; »
Processing Flow S%Q

CPU

PCI Bus
-

CPU Memg

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU
memory

© NVIDIA Corporation 2009

CUDA Kernels <X

NVIDIA

Parallel portion of application: execute as a kernel
Entire GPU executes kernel, many threads

CUDA threads:
Lightweight
Fast switching
1000s execute simultaneously

CPU Host Executes functions
GPU Device Executes kernels

© NVIDIA Corporation 2009

CUDA Kernels: Parallel Threads <X

NVIDIA

* A kernel is an array of threads, o
executed in parallel BESOEED
N)

* All threads execute the same lLd oot

code float y = func(x):
outputfthreadID] = v;

Each thread has an ID

Select input/output data
Control decisions

CUDA Kernels: Subdivide into Blocks

SIS

PUANE RN \\.\‘\

© NVIDIA Corporation 2009

<3

NVIDIA

CUDA Kernels: Subdivide into Blocks
ey \ \ 3
Y ///)

s

® Threads are grouped into blocks

© NVIDIA Corporation 2009

CUDA Kernels: Subdivide into Blocks <3

NVIDIA

® Threads are grouped into blocks
* Blocks are grouped into a grid

© NVIDIA Corporation 2009

CUDA Kernels: Subdivide into Blocks <3

NVIDIA

® Threads are grouped into blocks
* Blocks are grouped into a grid
® A kernel is executed as a grid of blocks of threads

CUDA Kernels: Subdivide into Blocks N>

;
)
I
j

L]
TS mi
L4
¢
H

L] BT frtsins 1
=t & ‘A‘ ‘A:‘ _.‘A.ﬁ‘ =]

® Threads are grouped into blocks
* Blocks are grouped into a grid
® A kernel is executed as a grid of blocks of threads

© NVIDIA Corporation 2009

>

NVIDIA

Communication Within a Block

Threads may need to cooperate
Memory aCcCesses
Share results

Cooperate using shared memory
Accessible by all threads within a block

* Restriction to “within a block” permits scalability
Fast communication between N threads is not feasible when N large

© NVIDIA Corporation 2009

Transparent Scalability — G84

<3

NVIDIA

LLLLLLL

E-

5
LLLLLLL

Irrlumnnnuut
DRAM DRA&M 1

12

10

8

Transparent Scalability — G80 >

NVIDIA

=

NVIDIA

Transparent Scalability — GT200

10

11

12

| 9 4

CUDA Programming Model - Summary B
: Host Device
* A kernel executes as a grid of -
thread blocks = 11l 2|l 3
R e -
* A block is a batch of threads 2L
Communicate through shared -
memory |
0l | @2 || G2
e i i
* Each block has a block ID Ll a2 i

* Each thread has a thread ID

MEMORY MODEL

© NVIDIA Corporation 2009

>

NVIDIA

Memory hierarchy

* Thread:
Registers

© NVIDIA Corporation 2009

Memory hierarchy <3

NVIDIA

Thread:
Registers

Thread: é
Private memory <‘

é m

B !

Memory hierarchy >

NVIDIA

Thread:
Registers

Thread: é
Private memory <‘

* Block of threads (work group):

ca memor LT 1L

B !

© NVI 2009 .

Memory hierarchy <3

NVIDIA
Thread: g
® Registers
Thread: g
® Private memory

_ 8 8 8 1 §
* Block of threads (work group): I I I I I

Local memory

? Local

© NVIDIA Corporation 2009

Memory hierarchy <3

NVIDIA
Thread: g
® Registers
Thread: g
® Private memory

EETEES
Block of threads (work group): I I I I I

Local memory

— _
: Local

© NVIDIA Corporation 2009

All blocks:

Memory hierarchy S%A

B 3% B

* Thread: '
R ||| ||| ||| T |||| |||_

* Block of threads (work group):
* Local memory Global

* All blocks:
* Global memory

© NVIDIA Corporation 2009

Memory Spaces

Memory Location | Cached | Access | Scope Lifetime
Register | On-chip N/A R/W One thread Thread
Local Off-chip No R/W One thread Thread
Shared On-chip N/A R/W All threads in a block | Block
Global Off-chip No R/W All threads + host Application
Constant | Off-chip Yes R All threads + host Application
Texture Off-chip Yes R All threads + host Application

© NVIDIA Corporation 2009

NVIDIA

>

NVIDIA

COMPILATION

© NVIDIA Corporation 2009

Visual Studio

Separate file types
.c/.cpp for host code
.cu for device/mixed code

* Compilation rules: cuda.rules
Syntax highlighting
Intellisense

* Integrated debugger and
profiler: Nsight

NVIDIA

CUDA
kernels

ol exe

-%‘ -I.. ‘%

11 Lol

I Executable/
OLL

© NVIDIA Corporation 2009

<3

NVIDIA

Linux

* Separate file types I
.c/.cpp for host code _“_l
.cu for device/mixed code

e

* Typically makefile driven

® cuda-gdb, Allinea DDT,
TotalView for debugging

Hl

4

Executable/

* CUDA Visual Profiler

© NVIDIA Corporation 2009

>

NVIDIA

Compilation Commands

nvcc <filename>.cu [-0 <executable>]
Builds release mode

nvcc —g <filename>.cu
Builds debug (device) mode
Can debug host code but not device code (runs on GPU)
nvcc —deviceemu <filename>.cu
Builds device emulation mode
All code runs on CPU, but no debug symbols
®* nvcc —deviceemu —g <filename>.cu
Builds debug device emulation mode

All code runs on CPU, with debug symbols
Debug using gdb or other linux debugger

© NVIDIA Corporation 2009

Exercise 0: Run a Simple Program

* Log on to test system

* Compile and run pre-written CUDA
program — deviceQuery

© NVIDIA Corporation 2009

G¥ROrCreapd lakynlader: revision number:

€obAI Canabit 18y YIoBHI repdsipn number:

Na%ed rapeungl efppdebadorsmory:

Number ef sokddprocessors:

Noteherafduseref constant memory:

Tetal ameunt eF spap&antemMerQryér block:

Tetal anebek eFf pbgisteirsmavyiPebiBlpek:block:
Wekplsppgaber of registers available per block:
WaxPmshZz8umber of threads per block:

Maximum 8ipbgropfedbreadiseReToR16FKa block:
Maximum sizes oF eaeh dimensien ef a §hvek:
Maximum sd@epyofitagh dimension of a grid:
Waxtira aengnyerttch:

desErreatd ignment:

€drekirFate-copy and execution:
Concurrent copy and execution:

TeBunpAidgeplimit on kernels:

Integrated:

PrésgpeNtERoss erge-locked memory mapping:

Compute mode:

one host thread at a time can use this device)

>

Yy

NVIDIA

CyRArbBeydce Qeerve (BupgdireiAglQuparsion (CUDART static linking)
There are 2 devices supporting CUDA

Device 0: "Quadro FX 570M"
DevmggoP - revesionCaG@ler :

1

i

868107776 bytes
4294705152 bytes
30

84836 bytes
©6388 bytes
46384 bytes
36384

8§22

6§12 x 512 x 64
83835 21855364x 1
562324xpHPe35 X 1
2681h8¢gtbytes
8565 byes

$ed4 GHz

Yes

No

No

Yes

Exclusive (only

>

NVIDIA

CUDA C PROGRAMMING LANGUAGE

© NVIDIA Corporation 2009

CUDA C — C with Runtime Extensions :\%a

Device management:
cudaGetDeviceCount(), cudaGetDeviceProperties()

Device memory management:
cudaMal loc(), cudaFree(), cudaMemcpy()

* Texture management:
cudaBindTexture(), cudaBindTextureToArray()

® Graphics interoperability:
cudaGLMapBufferObject(), cudaD3D9MapVertexBuffer()

© NVIDIA Corporation 2009

CUDA C — C with Language Extensions <3

NVIDIA

Function qualifiers
~_global void MyKernel() {} // call from host, execute on GPU
~_device float MyDeviceFunc() {} // call from GPU, execute on GPU
aalest int HostFunc() {} // call from host, execute on host
Variable qualifiers
~_device Tfloat MyGPUArray[32]; // i1n GPU memory space
~_constant float MyConstArray[32]; // write by host; read by GPU
~_shared float MySharedArray[32]; // shared within thread block

Built-in vector types
intl, Int2, Int3, 1Int4
floatl, float2, float3, float4d
doublel, double2
etc.

© NVIDIA Corporation 2009

>

NVIDIA

CUDA C — C with Language Extensions

Execution configuration
dim3 dimGrid(100, 50); // 5000 thread blocks
dim3 dimBlock(4, 8, 8); // 256 threads per block
MyKernel <<< dimGrid, dimBlock >>> (...); // Launch kernel

Built-in variables and functions valid in device code:

dim3 gridDim; // Grid dimension

dim3 blockDim; // Block dimension

dim3 blockldx; // Block 1ndex

dim3 threadldx; // Thread 1ndex

vold syncthreads(); // Thread synchronization

© NVIDIA Corporation 2009

. A
SAXPY: Device Code e
void saxpy_serial(int n, float a, float *x, float *y) h
{
for (int 1 = 0; 1 < n; ++i)
y[il = a*x[1] + y[i1: Standard C Code
J 4
/:;global__ void saxpy_ parallel(int n, float a, float *x, float *y)\\
{
int 1 = blockldx.x*blockDim.x + threadldx.Xx;
iIT (1 <n) y[i] = a*x[i] + Yy[i];
J Parallel C Code /
\l/blockldx.x
05 %
' Tthreadldx.x

blockDim.x

© NVIDIA Corporation 2009

SAXPY: Host Code <X

NVIDIA

// Allocate two N-vectors h x and h_y
int size = N * sizeof(float);

float* h x = (float*)malloc(3|ze);
float* h .y = (float*)malloc(size);

// Initialize them. ..

// Allocate device memory
float* d x; float* d y;
CudaMaIIoc((v0|d**)&d X, size));
cudaMal loc((void**)&d vy, size));

// Copy host memory to device memory
cudaMemcpy(d x, h_x, size, cudaMemcpyHostToDevice);
cudaMemcpy(d y, h_y, size, cudaMemcpyHostToDevice);

// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (N + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(N, 2.0, d x, d y);

// Copy result back from device memory to host memory
cudaMemcpy(h vy, d vy, size, cudaMemcpyDeviceToHost);

© NVIDIA Corporation 2009

<3

NVIDIA

Exercise 1: Move Data between Host and GPU

® Start from the “cudaMallocAndMemcpy” template.
* Part 1. Allocate memory for pointers d_aand d_b on the device.
* Part 2: Copy h_aonthe hosttod aon the device.
Part 3: Do a device to device copy from d_ato d_b.
* Part 4. Copy d_b on the device back to h_a on the host.
* Part 5: Freed aand d b on the host.

®* Bonus: Experiment with cudaMallocHost in place of malloc for
allocating h_a.

c | poration 2009

>

NVIDIA

Launching a Kernel

Call a kernel with

Func <<<Dg,Db,Ns,S>>> (params);
dim3 Dg(mx,my,1); // grid spec

dim3 Db(nx,ny,nz); // block spec Kernel 1 s (s o 1D
size_t Ns; // shared memory 7

5 6 7
cudaStream t S; // CUDA stream S e |
Execution configuration is passed to .
kernel with built-in variables
dim3 gridDim, blockDim, blockldx, 0,1/, 0,21| 0,3

threadldx; Kernelz DB Boa0D [I 2D

Extract components with LAl a2l
threadldx.x, threadldx.y, Vomnlaen el it
threadldx.z, etc.

© NVIDIA Corporation 2009

>

NVIDIA

Exercise 2: Launching Kernels

* Start from the “myFirstKernel” template.

* Partl: Allocate device memory for the result of the kernel using
pointer d_a.

* Part2: Configure and launch the kernel using a 1-D grid of 1-D
thread blocks.

* Part3: Have each thread set an element of d_a as follows:
1dx = blockldx.x*blockDim.x + threadldx.x

d afi1dx] = 1000*blockldx.x + threadldx.X

* Part4: Copy the result in d_a back to the host pointer h_a.
* Part5: Verify that the result is correct.

(@ | poration 2009

>

NVIDIA

Exercise 3: Reverse Array, Single Block

* Given an input array {a,, a,, ..., 8,1} In pointer d_a, store the
reversed array {a, ,, a,.,, ..., 8y INn pointer d_Db

» Start from the “reverseArray_singleblock” template

Only one thread block launched, to reverse an array of size
N = numThreads = 256 elements

* Part 1 (of 1): All you have to do is implement the body of the
kernel “reverseArrayBlock()”

* Each thread moves a single element to reversed position
Read input from d_a pointer
* Store output in reversed location in d_b pointer

© NVIDIA Corporation 2009

>

NVIDIA

Exercise 4. Reverse Array, Multi-Block

Given an input array {a,, a, ..., 8,1} In pointer d_a, store the
reversed array {a, ,, a,.,, ..., 8y INn pointer d_Db

» Start from the “reverseArray_multiblock” template

Multiple 256-thread blocks launched
To reverse an array of size N, N/256 blocks

Part 1. Compute the number of blocks to launch
* Part 2: Implement the kernel reverseArrayBlock()

Note that now you must compute both
The reversed location within the block
The reversed offset to the start of the block

(@ | poration 2009

>

NVIDIA

PERFORMANCE CONSIDERATIONS

© NVIDIA Corporation 2009

Single-Instruction, Multiple-Thread Execution >

NVIDIA

Warp: set of 32 parallel threads that execute together in
I-Cache single-instruction, multiple-thread mode (SIMT) on a

| _
streaming multiprocessor (SM)

SM hardware implements zero-overhead
warp and thread scheduling

* Threads can execute independently

SIMT warp diverges and converges when threads branch
independently

* Best efficiency and performance when threads of a warp
execute together, so no penalty if all threads in a warp take
same path of execution

Each SM executes up to 1024 concurrent threads, as 32

SFOfSFU.

SIMT warps of 32 threads
Shared
Memory

<

>
NVIDIA

Cache

SM
I-Cache
MT Issue

C

Tesla T10

INISSSS

T]
[]

T]
[

INISSSS

T]
[

o T
INISSSS

I====sil

INSSSS

Global Memory
Off-chip global memory is not cached

© NVIDIA Corporation 2009

Efficient Access to Global Memory <3

NVIDIA

Single memory transaction (coalescing) for some memory addressing patterns

128 bytes global memory

* Linear pattern
* Not all need participate
* Anywhere in block OK

16 threads (half-warp)

®
Shared Memory FE,%A
SM
e — * More than 1 Thyte/sec
C-Cache aggregate memory bandwidth
® Use it
As a cache

* To reorganize global memory
accesses into coalesced pattern

* To share data between threads

* 16 kbytes per SM

—o

H
H

© NVIDIA Corporation 2009

Shared Memory Bank Conflicts <3

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

© NVIDIA Corporation 2009

NVIDIA

Successive 32-bit words
assigned to different banks

Simultaneous access to the
same bank by threads in a half-
warp causes conflict and
serializes access

Linear access pattern
Permutation
Broadcast (from one address)

Exercise 5: Optimize Reverse Array <X

NVIDIA

Array reversal has a performance problem
* Use the CUDA visual profiler to run the code
<0k at
GLD_INCC: "Z EN
GST_ NC JHER N
CLAP_SE.iZE

* Take a note of GPU Time

NVIDIA

Exercise 5. Optimize Reverse Array

Goal: Get rid of incoherent loads/stores and improve
performance

Us_ sioved micoory<do . nverse ea ook

“art 1: comp:ite .ne qnum_ er of I /tes of L he <u »en
Onc« 2 .nt pe th ead

Foxt 2- i plc mer | th > ke nel
Comments should help
Don’t forget to compute the correct block offset!

Part 3: Profile the working code

Compare value of GLD/GST_INCOHERENT to previous
Compare GPU Time to previous

Reverse in Shared Memory >

NVIDIA

9 10 11 12 13 14 15

Global Memory

1
J Coalesced Read
_ —
Y s 01)) J]<Qs o) e cWogsg i g
>\
shared nems el OIS —— AL E N EER J
\ J
'_

== Coalesced Write

Global Memory 15 14 13 12 11 10 9

Matrix Transpose

®* Access columns of atile in shared memory to write
contiguous data to global memory

* Requires _ syncthreads() since threads write data read by
other threads

* Pad shared memory array to avoid bank conflicts

Idata odata

tile
'\
m

>

NVIDIA

>

NVIDIA

Matrix Transpose

* There are further optimisations: see the New Matrix Transpose
SDK example.

>

NVIDIA

OTHER GPU MEMORIES

© NVIDIA Corporation 2009

Texture Memory <3

NVIDIA

[|-Cache * Texture is an object for reading data
! MT Issue ¢ Datais cached

Host CPU Bridge Memory

: C-Cache *# Host actions
* Allocate memory on GPU

* Create a texture memory reference
object

* Bind the texture object to memory
¢ Clean up after use

GPU actions

® Fetch using texture references
textlDfetch(), tex1D(), tex2D(),
tex3D()

.

—

© NVIDIA Corporation 2009

Constant Memory f,%A
SM
* Write by host, read by GPU

C-Cache * Datais cached
‘ Useful for tables of constants

5|
=

Shared

>

NVIDIA

EXECUTION CONFIGURATION

© NVIDIA Corporation 2009

>

NVIDIA

Execution Configuration

vectorAdd <<< BLOCKS, THREADS PER BLOCK >>> (N, 2.0, d x, d_y);

How many blocks?

At least one block per SM to keep every SM occupied

At least two blocks per SM so something can run if block is waiting for a synchronization
to complete

Many blocks for scalability to larger and future GPUs
How many threads?
At least 192 threads per SM to hide read after write latency of 11 cycles (not necessarily

iIn same block)
Use many threads to hide global memory latency \

Too many threads exhausts registers and shared memory
Thread count a multiple of warp size Z=X+3;
Typically, between 64 and 256 threads per block

X=Yy+5;

© NVIDIA Corporation 2009

NnVvIiDIA

Occupancy Calculator

blocks per SM x threads per block
occupancy=——88

maximum threads per SM

Occupancy calculator shows trade-offs
between thread count, register use,
shared memory use

= Low occupancy is bad
= Increasing occupancy doesn’t always help

© NVIDIA Corporation 2009

>

NVIDIA

DEBUGGING AND PROFILING

© NVIDIA Corporation 2009

>

NVIDIA

Debugging

nvcc flags

—debug (-g)
Generate debug information for host code

--device-debug <level> (-G <level>)
Generate debug information for device code, plus also specify the
optimisation level for the device code in order to control its
‘debuggability’. Allowed values for this option: 0,1,2,3

Debug with
cuda-gdb a.out

Usual gdb commands available

© NVIDIA Corporation 2009

>

NVIDIA

Debugging

Additional commands in cuda-gdb

thread — Display the current host and CUDA thread of focus.

thread <<<(TX,TY,TZ)>>> — Switch to the CUDA thread at specified
coordinates

thread <<<(BX,BY),(TX,TY,TZ)>>> — Switch to the CUDA block and thread at
specified coordinates

info cuda threads — Display a summary of all CUDA threads that are
currently resident on the GPU

Info cuda threads all — Display a list of each CUDA thread that is currently
resident on the GPU

Info cuda state — Display information about the current CUDA state.

next and step advance all threads in a warp, except at _syncthreads|()
where all warps continue to an implicit barrier following sync

IA Corporation 2009

Parallel Nsight 1.0 e <X

NVIDIA

Nsight Parallel Debugger

GPU source code debugging

Variable & memory inspection

Nsight Analyzer

Platform-level Analysis
For the CPU and GPU

Nsight Graphics Inspector

Visualize and debug graphics content

© NVIDIA Corporation 2009

Allinea DDT <X

NVIDIA

=H{m]==

SCALE TO NEW HEIGHTS

GPU Debugging
Making it easy
Allinea DDT — CUDA Enabled

NVIDIA

TotalView for CUDA

PRRRRRRRRD
RRERRRRED

TRRRRRRD

HLAAL

LA |

IIM! TotalView for CUDA
ML

i)

1)

TOTALVIEW

>

NVIDIA

CUDA Visual Profiler

cudaprof
Documentation in $CUDA/cudaprof/doc/cudaprof.html

e o =5

CUDA Visual Profiler <X

NVIDIA

Open a new project

* Select session settings through dialogue
Execute CUDA program by clicking Start button
Various views of collected data available

* Results of different runs stored in sessions for easy comparison
* Project can be saved

>

NVIDIA

MISCELLANEOUS TOPICS

© NVIDIA Corporation 2009

Expensive Operations <X

NVIDIA

¢ 32-bit multiply; mul24() and __ umul24() are fast 24-bit multiplies
* sin(), exp() etc.; faster, less accurate versions are __sin(), __exp() etc.

* Integer division and modulo; avoid if possible; replace with bit shift
operations for powers of 2

* Branching where threads of warp take differing paths of control flow

Host to GPU Data Transfers rf,%\

* PCI Express Gen2, 8 Gbytes/sec peak

* Use page-locked (pinned) memory for maximum bandwidth between
GPU and host

Data transfer host-GPU and GPU-host can overlap with computation
both on host and GPU

© NVIDIA Corporation 2009

=

Application Software nVIDIA
(written in C)

CUDA Libraries
CuFfFT CuBLAS cuDPP

CPU Hardware | CUDA Compiler CUDA Tools

1U PCI-E Switch C Fortran Debugger Profiler

o 4 cores 240 cores

] >)
On-line Course rfl%n

Programming Massively Parallel Processors, Wen-Mei Hwu,
University of lllinois at Urbana-Champaign
http://courses.ece.illinois.edu/ece498/al/

PowerPoint slides, MP3 recordings of lectures, draft of textbook
by Wen-Mei Hwu and David Kirk (NVIDIA)

<3

NVIDIA

GPU Programming Text Book

David B. Kirk

David Kirk (NVIDIA)
Wen-mei Hwu (UIUC)

Chapter 1: Introduction

Chapter 2: History of GPU Computing
Chapter 3: Introduction to CUDA
Chapter 4. CUDA Threads

Chapter 5: CUDA Memories

Chapter 6: Performance Considerations
Chapter 7: Floating-Point Considerations

Chapter 8: Application Case Study | - Advanced MRI
Reconstruction

Chapter 9: Application Case Study Il — Molecular Visualization
and Analysis

Chapter 10: Parallel Programming and Computational Thinking Prcgrming MESSiVElY

Chapter 11: A Brief Introduction to OpenCL ll l
Chapter 12: Conclusion and Future Outlook Para e Processors

Appendix A: Matrix Multiplication Example Code A Hands-on Approach
Appendix B: Speeds and feeds of current generation CUDA @Z
devices TTRALNES,

© NVIDIA Corporation 2009

CUDA Zone:

CUDA Toolkit
Compiler
Libraries

CUDA SDK
Code samples

* CUDA Profiler

* Forums

Resources for
CUDA developers

© NVIDIA Corporation 2009

< cuba Zone

NVIDIA

DOWMNLOAD CUDA WHAT 1S CLIDA

Parallel Computing @ NVISION 2008 -

bl 83
- - -

Programming Algorithms-by- Low Viscosity Flow
Simulations for Animation

Block Made sasy
55x

EST CUDA NEWS

www.nvidia.com/CUDA

FORUMS MNEWAND EVENTS

I

DEVELOPING WITH CUDA

Save $100, Sign Up by June 30

Accelerate Large Graph

Towards Acceleration of Fault
Algorithms

Simulation

."I Thread
i w2

Optical Flow Algorithm using
CUDA and OpenCV

Relational Joins on Graphics

sMormal
Processors
%

Silicon Informatics Protein

Efficient Computation of Sum
Docking

Products on BPUs

SciFinance® Speeds Jacupa Tomographic Reconstruction
Financial Results with
40x

Parallel Computing

270 %

Filter by Application Type

M Computational Fluid Dynamics
M Digital Content Creation
M Electronic Design Automation W Libraries

W MNumerics
W Life Sciences

Filter by Content Type

W Application W Multimedia M Fresentation

W Code W Faper

<3

NVIDIA

